时间:2023-04-06 09:59:49 | 浏览:176
能读图的GPT-4震撼发布了!但要用它还得排队。。。
不如先试试这个~
加上一个小模型,就能让ChatGPT、GPT-3这类目前只能理解文本的大语言模型轻松读图,各种刁钻的细节问题都能手拿把掐。
并且训练这个小模型单卡(一块RTX 3090)就能搞定。
效果呢,直接看图。
比如说,给训练后的GPT-3输入一张“音乐现场”的图片,问它:现场在举办什么活动?
毫不迟疑,GPT-3给出了音乐会的答案。
再来加点难度,再给GPT-3酱紫的一张照片,让它来分辨照片中的帘子是什么类型的材质。
GPT-3:蕾丝。
Bingo!(看来是有点儿东西在身上的)
这个方法呢,是杭州电子科技大学和合肥工业大学的一个团队的最新成果:Prophet,半年前他们就已经着手进行这项工作。
论文一作是杭电研究生邵镇炜,他在1岁那年被诊断患有“进行性脊肌萎缩症”,高考时遗憾与浙大擦肩,选择了离家近的杭州电子科技大学。
目前该论文已经被CVPR2023接收。
话不多说,直接来看在Prophet这种方法的加持下GPT-3的读图能力。
我们先来看看它在数据集上的测试结果。
研究团队在两个基于外部知识的视觉问答数据集OK-VQA和A-OKVQA测试了Prophet,均创造了新SOTA。
更具体点,在OK-VQA数据集上,和Deepmind的拥有80B参数的大模型Flamingo对比,Prophet达到了61.1%的准确率,成功击败Flamingo(57.8%)。
并且在所需要的算力资源上,Prophet也是“吊打”Flamingo。
Flamingo-80B需要在1536块TPUv4显卡上训练15天,而Prophet只需要一块RTX-3090显卡训练VQA模型4天,再调用一定次数的OpenAI API即可。
其实,类似Prophet这种帮助GPT-3处理跨模态任务的方法之前也有,比如说PICa,以及之后的KAT和REVIVE。
不过它们在一些细节问题的处理中,可能就不尽如人意。
举个栗子
,让它们一起读下面这张图,然后回答问题:图片中的树会结什么水果?
而PICa、KAT和REVIVE从图片中提取到的信息只有:一群人在广场上走路,完全忽略掉了后面还有一颗椰子树。最终给出的答案也只能靠瞎猜。
而Prophet这边,就不会出现这种情况,它解决了上述方法提取图片信息不充分的问题,进一步激发了GPT-3的潜能。
那Prophet是怎么做的呢?
有效提取信息,并准确回答问题,能做到这些Prophet依赖的是它独特的两阶段框架。
这两个阶段也分工明确:
第一阶段:根据问题给出一些具有启发性的答案;
第二阶段:这些答案会缩一些范围,使GPT-3有充分的空间发挥潜能。
首先是第一阶段,研究团队针对特定的外部知识VQA数据集训练了一个改进的MCAN模型(一个VQA模型)。
训练好模型后,从中提取两种具有启发性的答案:答案候选和答案感知示例。
其中,答案候选是以模型分类层输出的置信度为依据对答案进行排序,选取里面的top10。
答案感知示例时指,将模型分类层之前的特征作为样本的潜在答案特征,这个特征空间中最相近的标注样本。
接下来就是第二阶段,这一步相对来说就很简单粗暴了。
讲上一步得到的“启发性答案”组织到prompt中,然后再将prompt输入给GPT-3,在一定的提示之下完成视觉问答问题。
不过虽然上一步已经给出一些答案提示,但这并不意味着GPT-3就要局限在这些答案中。
若提示给出的答案置信度太低或者正确答案并不在那些提示中,GPT-3完全完全有可能生成新的答案。
当然,除了研究成果外,这项研究背后的团队也不得不提。
第一作者邵镇炜在1岁时就确诊“进行性脊肌萎缩症”,是肢体一级残疾,没有生活自理能力,生活和学习需要母亲的全程照顾。
不过虽然身体受限,但邵镇炜对知识的渴求并没有减弱。
2017年高考他拿下644分的高分,以第一名的成绩被杭州电子科技大学计算机专业录取。
期间还获得2018年中国大学生自强之星、2020年度国家奖学金和2021年度浙江省优秀毕业生等荣誉。
本科期间,邵镇炜就已经开始跟着余宙教授进行科研活动。
2021年,邵镇炜在准备研究生推免时与浙大擦肩,于是留校加入了余宙教授课题组攻读硕士研究生,目前他在读研二,研究方向是跨模态学习。
余宙教授则是本次研究论文的二作以及通讯作者,他是杭电计算机学院最年轻的教授,教育部“复杂系统建模与仿真”实验室副主任。
长期以来,余宙专攻多模态智能方向,曾带领研究团队多次获得国际视觉问答挑战赛VQA Challenge的冠亚军。
研究团队的大部分成员都在杭电媒体智能实验室(MIL)。
该实验室由国家杰青俞俊教授负责,近年来实验室围绕多模态学习方向发表一系列高水平期刊会议论文(TPAMI、IJCV、CVPR等),多次获得IEEE期刊会议的最佳论文奖。
实验室主持国家重点研发计划、国家自然科学基金重点项目等国家级项目20余项,曾获得过浙江省自然科学一等奖,教育自然科学二等奖。
项目地址:
https://github.com/MILVLG/prophet
论文地址:
https://arxiv.org/abs/2303.01903
参考链接:
[1] https://zhuanlan.zhihu.com/p/613601646
[2] https://mp.weixin.qq.com/s/auKTsPZHnzSHbJLPjhFVlA
— 完 —
量子位 QbitAI · 头条号签约
关注我们,第一时间获知前沿科技动态
近期chatGPT异常火爆,仅仅用了60 天用户就直接破亿,这是何等可怕的速度!于是乎国内外大厂纷纷追随 AIGC 步伐, ChatGPT 引领 AI 在科技圈一路“狂飙”!由于涉及到太多的专业词汇,开始之前,先通俗易懂的解释这些词汇(图1
萧箫 发自 凹非寺量子位 | 公众号 QbitAI真·开源GPT模型,终于来了。参数量级130亿,大小比肩最近Meta开放的LLaMA-13B,但从数据集、模型权重到计算优化训练,全部开源。最关键的是,可商用。没错,虽然就GPT-3而言,之
丰色 发自 凹非寺量子位 | 公众号 QbitAI最强组合:HuggingFace+ChatGPT ——HuggingGPT,它来了!只要给定一个AI任务,例如“下面这张图片里有什么动物,每种有几只”。它就能帮你自动分析需要哪些AI模型,然
周鸿祎周鸿祎再次公开谈及自己对人工智能的未来判断。3月25日,2023中国发展高层论坛开幕,三六零(601360.SH,下称“360”)集团创始人周鸿祎以“人工智能与未来安全”为题发表主题演讲。演讲中,周鸿祎展示了AI绘图生成的自画像,以及
智东西编译 | ZeR0编辑 | 漠影智东西3月15日消息,今日凌晨,万众瞩目的大型多模态模型GPT-4正式发布!OpenAI发文称,GPT-4能接受图像和文本输入,输出文本内容,虽然在许多现实场景中的能力不如人类,但在各种专业和学术基准测
2023年3月30日,金融信息提供商彭博社发布了专为金融领域打造的大语言模型(Large Language Model,LLM)Bloomberg GPT。该模型依托彭博社的大量金融数据源,构建了一个3630亿个标签的数据集,支持金融行业内
中新网3月16日电 (中新财经记者 吴涛)北京时间15日凌晨,OpenAI发布大型多模式模型GPT-4。OpenAI称,GPT-4在先进推理上超过了ChatGPT,是OpenAI努力扩展深度学习的最新里程碑。这个“里程碑”到底有哪些特点呢,
今天 OpenAI 宣布推出 ChatGPT 4,ChatGPT Plus 用户在今天就能体验到。OpenAI 称它是「最先进的系统,能生产更安全和更有用的回复」。和上一代相比,GPT-4 拥有了更广的知识面和更强的解决问题能力,在创意、视
GPT可以说是2023最热门的话题,没有之一!到底什么是GPT? 为什么说GPT是第三次工业革命?什么是GPT?GPT 是 "Generative Pre-training Transformer" 的缩写,是一种基于Transformer
当我们还活在睡梦中时,人工智能ChatGPT横空问世,从连续回答问题、生成摘要、翻译文档,到信息分类、写代码、编剧本、做作业和写论文,ChatGPT几乎都能应对自如。两个月时间内,ChatGPT的月活用户已突破1亿,成为史上增长最快的消费者
谷歌吃了大亏之后,这次一声不吭,放了大招:对标ChatGPT的Bard测试版,刚刚正式对外发布。而且这次用户在申请候补名单之后,无需经历漫长的等待时间。没错,量子位也已经拿到了测试资格!(中间只有不到5小时的间隔。)实测之后表示,Bard效
界面新闻记者|李京亚3月15日凌晨2点,OpenAI正式发布了升级后的GPT-4。GPT-4是一个多模态大模型,可以接受文本和图像形式的输入,能使用文本解析并回应这些查询。在ChatGPT Plus上,开发人员可以通过API构建应用程序和